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TWO-DIMENSIONAL COMPRESSIBLE FLOW IN TURBOMACHINI!X.? WITH CONIC FLOW

SURFACES

By JomrD. STAKITZ

SUMBIAEY

A general method of anal@e is decelopedfor two-dimensional,
&eady, compream”bfe$OW in stator~ or rotore of radial- and
miwd-$ow turbomachinea with conic $OW mufacen (eu~ace8 of
right &cular conee genemted by center line of$mo pamrge in
the axial-radial pZane]. The ctriable8 taken into account are:
[1] tip 8peed of the rotor, ($]$ow rate, (3] bhde 8hape, (~] rarl”a-
tion in pawage height with radiua, (6) number of bkde8, and
(6) cone angle of the$ow ewfirce. Rek.ration ?nethod8are ueed
to coke the nonlinear d~erential equation for the etreamfunction.

Tle analymk indicatea that: (1) l%e mlution obtained for a
giren. turbomachine alao appliee io cerkzin other (equivalent)
turbomachine8 with a larger or 8ma&r number of like pa88age8
hwme spaa”ng of the bhrde8on the conicjlow surface, mme blade-
thickne88 dtitribution, and 80 forth) but with di~erent cone
angle8; ($) for the same number of n“milar bhrde8, the blade
kding i8 ~e88for miXCd-@W thanfor mdiaf.-$ow turbomachine8;
and (.9) any solution obtained for an outjow turbomachine with
#hockle88 [8mooth) ent~ is aho the 8ohk!”onfor an in$ow turbo-
machine with 8hoch%Ia entry and un”ththe j%w direction and
biade rotation ($ any] recereed.

TWQnumerical ezample8 are pre8ented; one for compre8sWe
and the otherfor incomprem”ble$ow in a centr@@ compreaaor
with thin, etraight bfade8. l%e 80hitiOn8 were obtained in a
region of tha compressor, inckding the impe[~er tip, that wa8
amumed to be unqfk.cted by the ink-t ctngfguration of the im-
pelier or by the d~user rane8 (if any). Both ezampfea are for
the came impeller (IF’ included angle between ~ade8 on conic
flow sarfirce) with the came tip 8peed (equirdent to a tip .Mach
number of 1.6 for the compre88ib[e-$ow ezample), with the came
flow rote, and with a constant $oto area normal to the $OW
eu?faee. me reeuh of the8e examp[e8 are &?icenby ph3t8 of the
dreamline8, constant relocity-ratio lime, and constant preewre-
mtio line8.

It t% concluded from the ezample8 that, if the $uid in high-
*peed, rotating, radid- and mtked-$ow blade eyatema is com-
pre88ible, incompraeibte 8oh&one gire poor quantitafire reeulte
(exceptiim, the dip factor) and, in 8ome re8pect8, poor ~alita-
tica remdte.

N’I!RODUCTION

Increased Imovdedge of flow conditions within radial- and
mid-flow compressors and turbinm should indicate means
of improving performance of these turbomachines. For
example, boundarylaym aepamtio~ which decmaaea the
efhiency of tke machines, can be minimized or eliminated

by aerodynamic design based on knodedge of the velocity
gradients that remdt from various design configurations. ___

For Rgiven set of operating conditions, the flow conditions
within radial- and mixed-flow turbmnachines depend on the
geometry of the machine (three-diimensiomd-flow efiects)
and on the properties of the fluid (compressibiMy and vis-
cosity). Most. treatments of the problem have been con-
cerned with the two-dimensional-flow effects for incom-
pressible, nonviscous fluids. (For example, see references 1
to 5.)

b the anaIysis reported herein, compressibility is consid-
ered. This consideration is especially important in mdml-
and mixed-flow turbomachines because the large preesure
ratios per stage result in density changes that greedy affect
the fluid velocities, and so forth. The anaIysis is developed
for two-dimensional, compressible, nonviscous, steady flow
through statom or rotors of radid- and mixed-flow turbo-
machines in which the center Iine of the flow passage in the
asiabadifd pIane generates the surface of R right circuIar
cone when rotated about the nti of the machine. The tvio-
dimensionaMLowpattern is considered to Iie upon thissurface.

The solution of twodimensionfd, compressible-flow equa-
tions can be accomplished by relaxation methods, which
were developed by SouthweII (references 6 and 7) and
which have been appkd to compreesibk-flovr problems by
Emmons (reference 8). It is essent.idy the procedure out-
lined in refmnce 8 that is employed in the nunmical solu-
tion of the ditlerential equation obtained in this analysis.

The annlysis is developed for turbomachines with a@i-
trary bIade shapes and is applied, in the numerical examples,
to 8 flow region, inchding the impener tip, of a centrifugal
compressor with straight, thin blades that lie on conic radii, ---,-.
(elements). A simplified analysis for stra@t bIades lying
on conic radii is developed that checks the redts of the
relaxation ecdution within the impelkr except for the flow
region near the impeller tip.

This antdysii was deveIoped at the N’ACA C1eveland
laboratory in 1047.

AIMiILYsrs
PESLIMINABY CON= SBATIONS

This adysie develops a generaI method whereby the
streamhnes, veloaty distribution, and pressure distribution
can be determined for steady, twodimensiond compressible
flow in statore or rotors of radiaI- and mixed430w turbo-
machkes with arbitrary blade shapes and varying passage

ml
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heights. The radial component of the flow may be in the
direction of increasing radius (outflow turbomachine) or in
the direction of decreasing radius (Mow turbomachine).

Conio flow surfaoe,-The analysis is limited to turboma-
chinm in which the centw line of the pamage in the axial-
radial pIane genmatea the surface .of..a right circular cone,
with the cone angIe a (fig. 1], when rotated about the axis
of the machine. (AU symbols are dehed in appendix A.)
The twodimeneional-flow pattern is coneic.ked to Lieupon
this cone surface (hereinaftw referred to as” conic flow sur-
face”). For mixed-flow turbomachinee the cone angle a is
leas than 180° but greater than OO. For the special caae in
which a is 180°, the canic flow surface becomw flat and is
norrnd to the h of the machine....Such turbomac4iwJ
(a= 180°) are designated radial-flow machines. For the
special case in which a is 0°, the conic flow surface becomee
cyliidrkal and is concentric with the axis of the machine.
Such turbomachines (a=CP). are dwignated axial-flow
machinee. Axial-flow machines are not considered in .tbis
analysis for reasons that me subsequently discussed.

Coordinate system—’f%e developed view of a conic flow
surface is shown .jn @ure 2. The dimensionksa, conic
coordinate R and 8 of this conic flow surface are relatiye. to

1.

mction
of rotofion
r fofor blades—, ,FLxM

center

‘- \

Fmrruxl.-mdd-orlrmrrurmeyuenrreh$htomti.*mYbe*tww
(statorbldv l)orrotb tb(mtorhhdd.caterunednmr QMmse
*m--wM-or@*

mmemteemrhceof

CO~ FOR AERONAUTICS

&kccfkn of rotohkw
for ro for blacks

/ -

--
From 2.-F’IuMparttehon&vebpmdvbwd mrdnMw mmhee.Thb Iurhamy b

S@tiOIIUY@M”r bhdea) m I’OMIM(rota bhdca). R md 0, dhnerrs!anh eoordioetm
rehtlveto tdmfeGZ ~helght mtionmnsl to COrdakwarrrface+U8ndl’,tarrc?ntld
andmdblmqummti,~ively, C4mlmths-Y mtIaQ.

the blades. The blades, and thmcfore the coordhmtc sys-
tem, may be stationary (stator blades) or rotating (rotor
blades]. The conic-radius mtio R is Mind M

R– r—FT (1)

where ria the cmic mdiua (distance along conic clerncnt from
apex of _w@ and Mwre the subs&pL Z’refers to Lhcblade til}
(either the nose or the tail of tho Made, ]~tirhcwr has th~
Iarger co@c radius). The passage-height ratio 11 (fi~. 1 anti
2) is nomnal to the conic fkw surface and is a continuous
function of the conic+adius ratio R

. .

H-+) (2)

where his the passage height at any cmk-mlius ratio R.
Velooity rattos.—A fluid particle on a developed cmtic

flow surface has a relative tmgential-veloeity mtio U (fig. 2)
and a radial-velocity ratio V (fig. 2) that. are relakd to the
relative velocity ratio Q by

Q-:=(uS+~M @a)

where

u ~:=— (314

v :’c- (2C)

where

c local speed of sound
!I velogity of fluid relative to M&a
u tangential component of ~ (pasitivc in diictiou of ““

increasing @)
v mdial (along conic element} component of q (pmitivo

in direction of hmrcaekg conio-radsus ratio)
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Subsmipt :

0 absolute stagnation condition in region of uniform
flOW UpStlWiM of blades

The relative velocity ratio Q is defined on a coordinate sye-
tem that is relative to the bIadee, thmefore the velocity q
(and u) is absohitefor n stationary coordinatesystem (stator
blad~] and relatire for a rotating coordinate system (rotor
blades).

ASSRIQ@OnS and hlit8tioM.-This ana]@e assumes that
the flow varies only aIong the conic flow surface, that is,
that flow conditions are uniform acroa5 the passage normal
to the conic flow surfaca In order to satisfy this assump-
tion it is necessa~ that: (1] The gradient of h with respect
to r be end; and (2) the cone angle a (6g. 1) be sufficiently
large. The allowable variation in CYfrom 180° will depend
on the relative magnitudes of h and r and on the desired
accuracy. For end vabs of a the fIovrmust be assumed to
exist in concentric annuli, each with negligiile pessage
height. For the hypothetical limiting case m which the
ratio h/r approaches zero everywhere akmg the conic fiow
surface, the ana1y9ieis accumte for aIl wduwi of a.

The anaIyeie assumes that steady flow esista relative to
the blades. The relative motion between stator and rotor
blades introduces pulsations that make the flow unsteady.
These pulsations rapidly diminish, howe~er, m the statore
and the rotors are moved apart so that the reIative flow may
be treated as steady (between boundaries, which are far
enough upstream and downstream of the bladee to obtain
uniform flow) provided the stato~ and the rotora are not
too C1OSStogether.

D~E12ZlWTIALEQUATIONSFOB FLOW IXR&PLAl!l!E

The dHerential equations for steady, two-dhneneiomd,
compressible flow are dereloped from the continuity eq~
tion, the equation for absolute irrotational motion, and the
general energy equation.

Continuity and stream funotion.-%m st&dy-flow con-
tinuity considerations for the fluid particle in figure 2

(V’HR).+(:“H),=” (4)

where p is the weight density of the fluid, and where the
coordinate subscripts (1? and 8, in this cese) refer to partiaI
derivatives with respect to the coordinates.

A dimensionhss stream function # satisfies the continuity
equation (4) if defined as

#+ ~HR (4a)

and

ti+ UE (4b)

Absolute irrotational motion.-In the absence of viecoeity,
shock nonuniform heat addition, and so forth, the absolute
motion of a fluid particle is irrotational. The dimension-
1sssabsolute circulation dI’ about the particle in &me 2
is therefore zero, and

997zsl—le
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dr=o=[(RM,+ Lqlhi81d11-[Vd~e

where the blade-tip Mach number .Lfr is defined by

where u is the angdar velocity of the rotor and where
(RM+ U) is the tangential component of the absolute
wbcity mtio. (For stator blades Mr is zero.) After eimpli-
fication,

—zIf==;+u+ (6)

Substitution of the stream function # as defined by equa-
tiOD8(4a) and (4b) gives

m

where the double coordinate subscripts (RR and M, in this
case) refer to second partial derivatives with respect to the
coordinate%

QeneraI energy equatiom-The general ene~ equation is
used to determine the density ratio p/P, in the differential
equation (7). When expressed in terms of the vebcity
ratios defined by equations (3b) and (3c), the generel energy
equation becomes

Jc,T+~[(R3fr+ U)s+ V?= JC,T,+ ~(%) (8)

where
J mdumical equkdent of heat
C, SpSCifiCheat at constant p~UK’e
2’ static (stream) tempemture .
g gravitational acceleration
Subscript :
U upstream boundary (bouJ.u& in region of uniform flow

upstream of bIades)
and where the “whid” ratio x is deEned by

h= R(RM,+ U) (9)

(vrhich is the did or abscdutemoment of momentum radius

( ))”times absolute tangential docity, r sin ~X wr sin ~+u

( )divided by a constant rr ein ~XC, . The last term in equa-
dci+.~

tion (8) is the work done on the fluid and is eqml to —
9

times the change in whirl ratio. The total work done on
the fluid is given by the hat term in equation (8) with h equal
to XD (where subscript D refers to downstream boundary,
the boundary in the region of uniform flow downeham of the
bIadea). This totaI work is positive for compressors and
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negative for turbines. The whirI ratios k and &Jare con-
stant in the uniform flow regkms upsk and downstream
of the Madee (constant abadute moment of momentum).

Rearrangement of eqyation (8) with

co’= (7–l)J@,z’,

where 7 is the ratio of SPCCMCheats, results in

from which
1

:=(:)+={

T=i
1 +7+ [(Iw#-q–2M,h7]

1
(11)

Mao, from equations @a), (4a), and (4b)

(12)

Equations (11) and (12} together with the genmd ditTerentiel
equation (7) provide three equations with three unknowns:
#, Q, and ~/p,. The solution of these equations determines
the steady, tm-dimensiomd flow of compressible fluid
through turbomachines with arbitrary Made shape, with
arbitrary variation in the pasaag~height ratio, and with
constant cone angle.

METHOD Or SOLUTION

Equation (7), which is nob, can be adved (together
with equations (11) and (12)) by relaxation methmls.

Maxation methods-Vshms of # are estimated at each
point of a grid system placed within the boundaries of the
probkn, and the residuds R, which rwult from the estimated
values of #, are computed for each grid point by expressing
the dMerential equation for #in i?nite-dii?erence form with
the sum of all terms equal to R instead of zero. The solu-
tion is then obtained by systematidy varying (relaxing)
the wduee of # at the grid points inside the boundaries
until the values of R approach zero.

!hnsformaticm of ooordinatss.-For the numerical solu-
tion of this problem by reIa.xationmethods, it is convenient
(but not necessary) to select a new set of coordinates (refm
ence 8) so that blades of arbitrary shape in the physical plane
(R,fl coordinates) become thin, straight, and paraUeIin the
transformed plane (g,~ coordinates). Thus a grid of equally
spaced points can be pIaced between the blades. This trans-
formation of coordmtes is represented by the general
awdytic function

H% o +W, o =fi~ =P (~ol (13)

where the Cartesian coordinates ~ and q in the h-plane cor-
respond to velocity potentiaI lines (t=constant) and stream
lines (n=constant) in the Ih9-phmefor incompressible flow
past the blades, which, for purposes of the transformatio~
are considered to be stationary (w= O) and to have a con-
stant height (H= 1}. Equation (13), in specfic form for a

given bIade
and 8

FOR AIIRONAUTICS

shape, determines $ and q as functions of R

(138)

Equation (7), in tams of the transformed coordmatea ~ .
and q given by equation (13a), becomes (appendix B)

end equation (12) becomes

(14)

(15)

where His now a function of f and q (given by equations (2)
and (13a]) and where the md%cbts u~, ui. and q~me deriv-
ativ& of”~uation (13a) dehed by - ,,.,

&ut=—qB=z

vf=;=&?l

qi= (=?+WW

vrhere the subscript i indicates that the coefficients
sDond to incompressible velocities in the R&plane.

(16a)

(Mb)

(10’0)

corre-

“ For certain &uple blade shapes, equation-(13) is a simple
analytic expression that determhw ~(l?,o) and q(R,6) (equa-
tions (13a)} directly. For arbitrary blade ahapeq however, a
speciiic exption for equation (13) is r-totreadily avaiIable
and it is easier to obtain c(l?,d) and q(l?,t?} by rekation
solutions of the LapIace equations for t and q in the l?8-
plene (appendix C).

Ffnite-difference equations.-In order to acdve the system
of equations (equations (11), (14), and (15]) by rekation
methods, equations (14) and (16} must fit be changed to
finit~iilerence form This change is accomplished with
the aid of the folIowing equations (reference 7, p. 19), vrMch
are baaed on fimt+rder differences: (Note that higher-order
differences ccdd be used, which wcndd result in more com-
plex finite-diHerence equationa but which vnxdd enable
larger grid spacing, and therefore fewer grid points, for the

(17)
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L + + + +

+

( )2o+ +
i

+

+

+

+ + + + +

where

F any twicediEerentiable function of two variabke (g and
q, m this case)

&grid spacing

Sllbscriptx

1,2,3,4 grid points adjacent to point being coneidemd
(F with no subscript)

A sample grid is shown in figure 3. The grid spacing b is
arbitrary. However, the smaIIer the value of it, that is, the
lmger the number of grid points, the greater is the accuracy
of the approximate, titedfierence equations (17).

With the aid of equations (17}, equation (14) becomes

*+ t (*I—WUf—(*2+4)%IX

[(Iog, H,–log. ZQnf– (IOg.IL–log. zrJ?lJ–

(18)

where the residual R has a nonzero value when tha vaIues of
# do not satisfy the difhrentid equation (14) from which
equation (18) was obtained.

Equation (15) in fib-difference form becomes

Q:=* [&-w*+(~rxJqM

After the values of # have been estimated

283

(19)

at the mid
pointsinside the bound-aries, the system of equations (~1),
(18), and (19) provides three equations with three unknowns

~, Q, and R at eaoh grid point. Equations (11) and (19)

d~termine the values of the density ratios in equation (18),
which is then edved for the residuaI R.

BOONDAEY ColimDEaA’rIoxs

The vahwe of # at the grid points insiie the boundties
depend upon the mdues of # at the grid points aIong the
boundaries. These boundary values of # me determined
by the design Characterieticaand the operating conditions
of the tUrbOIl18CbiJl&

Tooation of boundaries.-The boundaries of the flow fieId
in the l?&pIane (@. 4(a)] are the bIade surfaces and the
upstream and downstream boundaries at constant vahms of
2?, which are any distance far enough from the blades to
insure uniform flow conditions at these boundaries. The

upstream and downstream boundaries enclose all the blades;

Downstream ~ty *r ou+flow
turbwnochrn+ w upshsotn &im-
dary for intiw turbmnochine,

& or R= ..-7

‘(
----Quosi~nbs

q=l.o

A@

6-0
—---.1

Fmrsu L-EWIlddmaftypid tw&dtmeIukms153f?neldkummtruybhde*.
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however, from synmetry comiidmations, the flow oonditiona
along lines of constant R are cyclic with a period equal to
tho blade spacing so that the solution need be obtained onIy
in a region that encloses the equivalent flow between two
blades, This region is bounded by any two bladea, the
upstream and downstream boundaries, and by quasi bound-
aries between the two bladea and the upstream and dmvn-
etream boundaries (&g. 4(a)). These quasi boundaries may
have any reasonable, continuous shape but must have the
same angular spacing M ,(fig. ,4(a)) as the bbtd~, where

(20)

where 1? is. the number of blades (or passagss). It is
convenient to select as the. alwpe of these quasi boundaries
the incompreaaible, stagnation stresmlinee (constant q) that
are determined in appendix C.with stagnation points at the
nose and the tail of the blade.

In the %plane (fig. 4(b)), the blade surfaces become linee
of constant ~ and the qusai boundaries become extensions of
theeesame lines. The upstream and downstream boundaries
in the f~plana are straight (appendix C) but, in generrd,
are not at right angles ta the lime of canetant q. The two
blade surfame are genemlly different lengths in thh plane
(fig. 4(b)).

@ along blade boundaries.-The boundary vahm of #
along the blade surfaces are constant and cartbe determined
from the following considerations:

The difkentitd flow rate between adjacent streadines
isshown in@ure6andie given by

d~=p&.rrHRd6-&N#ZdR

where w is the flow rate between streamlines. From equa-
tions (3b), (3c), (4a), and (4b),

dw=p~&fl=(tid9+$JW
or

dw=p4&r~# (21)

If w and $ are assigned vti of zero along the positive
blade surface (the blade surface in tie direction of increming
o), equation (21) can be integrated across the passage to the
negative. blade surface (the Made surface in the direction of
decreasing 0) to give

>P&r*= “-- ““ (22)

where ~’ is the total now rate through the turbomachine
and the subscript n refera to the negative blade surface.
Equation (22) can be simplifmd by the following consider-
ations:

The flow area a= of the annuhu at the tip of the blades is
fjh%ll by

ar=2T sin ~ r&

from which equation (22) cgmbined
becomee

#m=#JAe

with equation (20)

(2a)

where the flow coefficient # is defined by

(24)

Equation (23) determines the boumhuy value of # on tlto
negative,blade surface as a function of the opcrat ing pmam-
eter # and the deeign parameter Ad.

Equation (23) was developed for through flow in the
direction of incresdng radius ratio (outflow turbornachincs),
that is, for positive vahwa of the raditd-velocity ratio Y.
l?or t,hrdigh flow in the direction of dcermsing radius ratio
(Mow turbomachinos), that is, negative values of 1”, the
magnitudg of #Z is given by equation (23) but the sign is
changed from positive to negative.

# sJo~ quasi boundaries extending from positive blade
—Because the quasi boundmiea in the ~vplano cn-surfkce.

close the_equivalent flow between two Madca (see section
Looadon of boundaries), the valuee of # at points along thr
quasi boundaries extending from tho ncgativo Mado surfww
(&. 4(h)) are *, greater (outflow machine), or #a Icm
(inflow machine) than the valuea of # at corresponding grid
points (corresponding to the same value of l?) along thr
quasi boundaries extending from tho positivo Mtido surfticc.
Therefore, the valuea of # along the quasi Ixmndarics extend-
ing from the mgative blade surface are not recorded or
relaxed.

IWmated valuea of the stream function # along the quttsi
boundaries extending from the poeitivc bla~o sur~ucc
&plane (fig. 4(b)) can be obtained by assuming, m

ii the

a first

+

Roums.-mlfdpdbbktwwaadbmllt Uremtsm RsdkIamqment of Iluw W,
Pc4##=’i -w ~ t of sow * -Pak##dE
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approximation, that.the flow conditions upstream and down-
stream of the blades in the R&plane (fig. 4(a)) are uniform,
that is, the flow conditions are a function of only l?. The
variation in # with f along the quasi boundaries extending
from the positive bIade surface can then be determined
(appendiz D) from continuity and from the whirl ratios &
and hD, WhiChfOr mlifO1’mfiOw rellMliIlCOI@mt U~trC8m
and downstream of the blades (conservation of moment of
momentumj. The vrhirl ratio h is epecided and the did
ratio h~ is determined, for a given blade shape and operating
condition, by the Joukowski condition, which requirm that
the rear stagnation point occur at the bIade td (or, in the
case of indnitely thin blades or blades with cusped taiIa, the
flow must be tangent to the blade surfaces at the tail). The
value of hn can be estimated hwm considerations given in
appendix D.

The vahme of # along the quasi boundaries extending from
tbe positive bIade surface (which values are obtained from
the preceding variation in # with ~) are estimated values
and must therefore be rdaxed.

# aIong upstream and downstream boundaries.– The
vahe of # at any point along the upstream or downstream
boundary (@. 4(b) j is deten.uined by the integrated wiria-
tion in # along the quasi boundary from the fixed (zero}
value of # on the positive blade surface and by the integrated
variation in ~ along the upstream or downstream boundary
to the point in questiom The variation in # aIong the quasi
boundarim was estimated in the previous section, and the
mwiation in # along the upstream and downstream bound-
ark is constant (uniform flow conditions assumed at the
boundaries) and is of such magnitude that the change in #
from one quasi bounda~ to the next is equal to #a.

The wduee of # along the upstream and downstream
boundaries (#u and #~, respectively) are considered fied
during a rekmation solution. But these values of #, for the
initial relaxation solution, me dependent upon the estimated
variation in # along the quaai boundaries estending from the
positive bIade surface. In general, therefore, these vahwe of
#c~and #n do not result in a solution that exactly satietlesthe
prescribed whirl ratio Xu upstream of the bIadee and the
Joukomeki condition (which, togethm with the blade shape
and the operating conditions, determines km)downstream of
the blades. It is therefore neuaUynecessary, after the initial
relaxation eoIution, to adjust (by methods developed in
appenciims E and F) the values of $~ and #D (kW@V!,

however: the same uniform variation in # along three
boundarwe). The relaxation solution is then repeated using
these new vahma of #C,and #~ that satisfy& and the Jou-
koweki condition.

ADDRONAL comLmBATIoxs

Equivalentturbomachfnea with dffferent oone anglea.—
The flow fMd for the flow that. passes betwem any two
bIades is the same for all bIade psEsageam a given turb
machine. Therefore, the solution obtained for the flow
field in a given turbomachine deo applies to certain other
(equivalent) turbomacbirwe tith a larger or smaller number
of like passages having the same angular spacing of the
blades M, blad-thiclmesa distribution, and so forth, but

with different cone angles a. The cone angke for the Wuiv- .._._..
alent turbomachines are determined by the number of
passages Bin the machine and are given by equation (20) as -

.=2 Sin-1g

Also, from equation (20),

so that a mdd-ffow tdmnacbine (a= 180°) has more
bIadee than an equimknt mixed-flow turbomachine
(Q<180a], which has the same bhide loading, and so forth
Furthmmore, if the number of bIadee in the equivalent
mixed-flow turbomachine is increased to equal the number
of blades in the radial-flow turlwmachine, the blade loading
in the mised-flow machine is demeaeed, so that, in generaI,
for the same number of similar blades, the blade loading is
Iess for mixed-flow than for radhd-flow turbomachines.

Equivalent outflow and inflow turbomaohines. —Any solu-
tion obtained for an outflow turbomachine with shockIem
(smooth) entry is also a solution for an inflow turbomachine
with shockkea entry and with the flow direction and blade
rotation (ii any) reversed. The shocklese entry for the out-
flow machine corresponds to the Joukowski condition for the
MOW machine and, vice versa.

AxiaMow tnrbomaohines.-For axial- flow turbomachines,
the cone angle a becomes zero and the flow field is assumed
to lie on a cylindrical surface about the axis of the machine.
For a cyblrical surface, the conic radius r is indnite and
therefore the angle 8 is zero. h a result, the cylindrical
flow surface degenerates into a singIe point (1,0) on the
developed conic flow surface (R,o in @ure 2, so that no
solution can be obtained for axid-fiow turbomacbines on the
developed conic tlow surface for which this amdysis was
deveIoped.

NUMERICAL PROCEDUEE

~ detaiIed outline of the numerical procedures for the
relaxation solution of compreesibletlow problems is given
in reference 8. The emphasis is placed herein on those
features of the scdution that are peculiar to the flow in
turbOmSCfiCS with COIliCfiOWSUIfM!CS.

The complete rehmation soIution is conveniently divided
into two sections. In the fit sectio~ the initial rekation
scdution is obtained using approximate values of #D and #U
that are estimated to satisfy the Joukowaki condition and the
preacriied whirl ratio b. Ln the second section, the ap-
proximate vehes of #D and $U me adjusted to satisfy the
Joukoweki condition and the prescribed k, and the final
rdaxation solution is obtained. A brief outline of the nu-
merical procedure for the initial relaxation solution follows.

&mrllM amAxATIoNSoLurlox

Design oharaotmistica and operating conditions.-In
order to solve the eyetwn of equations (11), (14), and (15)
for the stream function *, it is necessary that the foIIo*
design characteristics and operating conditions be specified:
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Design c.haracteristica:
(1) Pa&ge-height ratio ~, which is a function of the

conic-radius ratio 1?

H=f (R) (2)

(2) (lone angle a, which is constant (*. 1)
(3) Arbitrary blade ahape;wbic,b determines (appendix C)

from which the coficienta u,, a~,and gt in equations
(14) and (15) are obtained by equations (16a), (16b),
and (16c), respectively.

(4) Number of bladm B, which together with the cone
angle a, determines the anguIar blade spacing Ad

(20)

Operating conditions:

(6)~fl ratioUpStl’eSItlof bkda Xu, where k is ddmd
by

A= R(RM,+ U) (9)

The vahe of Xuresults from the codguration of the
turbomachine ahead of the bIadea (design chmactir-
istic) and from the flow rate.tiugh the machine
(operating condition)..

(6) Tip Mach number A&j which is ddned as

For stntoi blades MT is zero.
(7) Flow coefficient +, which is defined as

(24)

This coficient is proportional to the standard equiv-
ahnt flow-rate parameter @/~ (reference 9)
where .-

8 ratio of upstream absolute stagnation temperature
to standard sea-leveI temperature

d ratio of upstream absolute stagnation pressure ti
standard sea-Icml preaaurc

(8) Ratio of specific heats 7, which fur n givcu prnldwn is
considered constant

Boundary VaIuesof ~.—The locations of tho boum.hwicsin
the +pIane arc discussed under Location of boundaries in
the section ANALY81S. The boundary vahwa of # are
determined by the deeign characteristics and operating con-
ditions outIined in the previous section and by the Joukowuki
condition. The various lxmnda~ values of @ arc shown ou
the relaxation grid for an outflow tmrbonnwhim in thr
&@ane in @ure 6. The manner in which the bounthuy
valuee are obtained is summarized as follows:

(1) The value of the stream function along tho positivo
bIade surface in figure 6 is arbitrarily set equal to mm.
(See section # along blade boundaries,)

(2) The vahe of the stream function along the ncgalivo
bIade surface in figure 6 is given by

#m=#At9 (23)

‘Mc stream function #. is positive for outfiow turbOma-
chinea and negative for inflow machinca. (S00 acdion #
along Made boundaries,)

(3) The values of the stream function nlong the quasi
boundaries extending upstream md Jownstrwun of tlw poei-
tive blade surface depend on thu spcrificd whirl ratio Xu
upstream of the blades and, for a given Made shapo and
operating conditions, on t.hoJoukowaki condition downstrcnm
of the bIadea. The xncthod for cshatiing # nlong thesequasi
boundaries is given in appendix D. Values of # arc nok
recorded or relaxed ldong the quasi t)oundarice cxtt?nting
from the negative blade surface for masons given in the
section # along quasi boundaries extending from positive
blade surfaoe,

(4) The values of the stream fmwt.ion tdong [hc upstream
and downstream boundaries vary uniformly (steady-flow
condition) in the direction of increasing q at. the rate of #B
per unit of ~. (TIIia rata is positivo for outflow turlm-
machines and negative for inflow machines.) Tho n}agni-
tude of # is fixed at the intersection of the quasi boundaries
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(emending from the positive blade surface) with the upstream
or downstream boundary by the variation m # aIong these
quasi boundaries.

Grid hyOUt.-.~ system of Cqlldy Sp&CCdgrid points
phwed on the flow fieId in the &pIane is shovm in @ure 6.
The grid spacing &is SeIeotedso that an integral number of
spacings occur between the bIades. The smaller the grid
spacing, the greater is the accuracy of the tit~erence
equations (18) and (19), but also, the greater is the number
of grid points and therefore the labor involved in obtaining
the soIution.

For reasons given in the section # aIong quasi boundaries
extending horn poaittve blade aurfaoe, grid points are not
located on the quasi boundaries extending from the negative
blade surface.

It is convenient (appendix E) to locate the grid system so
that a grid point Iies at the blade tail on the positive bIade
surface. In this case, the grid point on the blade nose of the
positive blade surface is genendly not equdy spaced from
the interior grid points. Also, because the upstream and
downstream boundaries are not normaI, in general, to the
* (@. 6), the grid points on these boundarim are usually
not ecpdy spaced from the iuterior grid points. In order to
acmunt. for these unequal spacings of the boundary grid
points, the fite-difference equations (18] and (19) must be
modiied at the adjacent interior grid points (to be suba~
quently discussed].

After estimating (or assuming) the values of # at the
interior grid points, the problem resolves itself into two
parts: (1) ca.IcuMion of the residuals R at the interior grid
points and aIong the quasi boundaries extending from the
positive bIade surface (which residuds remdt from the
estimated vahmv of # at these points); and (2] rdasation
(ehination) of these reduals by suitabIe ~djustments in
the values of # at these grid points,

ReaiduaIs.-The residuaIsat equally spaced interior points
of the grid system are computed from equation (18). The
density ratios in equrdion (18) are cleterminedby equation (11]
with the aid of equation (19). M. the interior grid points
adjacent to the Made surfaces, the soIution of equation (18)
requires the density ratios at the grid points on the
bhde surfaces: these ratioscan be determined by --

polating the ~aIu~ of p/Poobtained at interior grid points or
by equations (11) and (19) at the boundary grid points
using mtrapolated values of # beyond the boundaries.

In general, the grid points sIong the upstream and down-
stream boundaries are unequally spaced from the adjacent
interior grid points (@. 6) so that at th- interior grid
points the i5nite-difference equations (18) and (19] must be
modified to account for the unequaI grid spacing (reference 7,
pp. 73-74]. This unequal grid spacing also esists, in
general, between the nose of the positive bIade surface and
the adjacent grid point on the quasi boundary (&. 6).

In order to compute the residuals at grid points along the
quasi boundaries extending from the positive blade surface
@g. 6), equations (18) and (19] require values of #Lthat Iie
outside the flow field enclosed by the quasi boundaries
(fig. 7). From spnmetry considerations and because the
quasi boundaries enclose the equimdent flow between two

bIadee (see sectionZooationof boundaries], the values of
#A equal #, 1SSS (or greater, for inflow turbomachines) than
the dues of @ at corresponding positions (same value of
l?, that is, same increment of ~ from the tad, or nose, of the
blades) aIong the row of interior grid points adjacent to the
quasi boundary extending from the negative blade surface.
That is,

#4=#A–#. (20

where #4, corresponding to #Afor a gi~en grid point along
the quasi boundary extending from the positive blade sur-
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face, is shcmn in @ure 7. In general, #4 does not lie on 8

grid point and the due of #A is therefore obtained by linear
interpolation between the adjacent grid points #S and #a
(Q!. 7). Therefore,

#A=#B+ (h-h?) : (26)

vihere b’ is deilned in figure 7. From equations (26) and (26],

Equation (27) determines the value of $4 required by equs-
tions (18) and (19) in order to compute the residuals aIong
the quasi boundariw astending from the positive blade ,-
surface.

II rdl the estimated vahs of # are correct, the value of R
is zero at all grid points. If, however, the dmated vahes
of # are incorrect, the values of R are iinite and may be
positive or negative.

BelEuatiom-A.fter the residuds are computed, it remains
to rehm (that is, reduce) these residuals by suitable changea
in the values of ~. In order to determine the magnitude
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of the required claw in # at the equally spaced interior
grid points, all terms of the ilnite-difference equation (18)
are assumed to remain constant except the terms#1+~+ti+
$4-4$. A change in the value of # therefore causes a
four-fold chm.ge of opposite sign in the value of R, and t.hie
change in # aIeo causes m equtd change in the vahwa of R
at each of the adjacent grid pointe (because dative to these
points the change in # amounta ta a change in *1, **, ~, or
#J. At grid pointe that arc unequally spaced fmm adjacent
points (for ezample, at the grid points adjacent to the up-
stream and downstream boundaries, fig. 6) a change in
# cbangea R an amount that depends on the coefficient of #
in the flnitedifference form of equation (14) developed for
unequal spacing. (See previous section.) Also, the retndt-
ing change in R at adjacent grid pointe depends on the coef-
Iiciente for the terms ~1,*s, ~, and *4 in this finitedifference
equation. In particuhm,it should be noted from equation (27)
that changea in VS and #= have a weighted tieet upon
the reaidualaat the corresponding adjacent grid pointe along
the quasi boundaries extending from the positive Made
surface, and vice veraa.

The changes in # and R are recorded on the grid sheet as
the work progresses. By contimdy reducing (relaxing)
the larger reaiduale (any dwired amount), the values of all
reeiduale gradudy approach zero. When this condition is
reached, the residuals are recomputed using the complete
finits-difference equation and taking into account the new
vaiue.aof the density ratio. After the new valuea of R have
been computed, tic relaxation procedure is repeated and this
cycle is continued as often as necessary to achieve the de-
sired accuracy.

R-EINAL SOLTI’IION

The whirl ratio, hU upstream of the bladts and the
Joukcwski condition downstream of the bladm are governed
by the values of the stream function specifwd aIong the up-
stream and downstream boundarke (#u and #~). In
section I, thwe va.hs of #U and #~ were determined from
the estimated variation in # along the quasi boundaries ex-
tending from the positive blade surface (see section
Boundary values of #) and, in genemi, do not rmuh in a
solution that ezactly satiaika the pmmribed value of k and
the Jouitowaki condition. In section II, #~ and #~ are th-
fore adjusted to satisfy these conditions and the relaxation
solution is repeated h obtain the final distribution of # in
the flow field.

Zoukowskf oondition.-I.f the Joukowski condition is aatia-
fied, the rear stagnation point occurs at the tail of the blade,
or, in case of infinitely thin bIa.des or blsdea with cueped
taiis, the flow is tangent to the blade surfacea at the tail.
In either case, from appendix E,

0=4$: –6$t+4#:— #i’ (E2)

where # is the value of # after the Joukovvski cmdition is
satisfied and where the subwripkia, b, c, and d refer to the

---- @ta81 bautkfaty
fl+

o 0 0

{

o 0 0

[ @de taii

mum s.-ReIasnthn gridla h.plm #bowingVatuaC4* usedbloquatlon(’m) toahk
Joukowaklcondkbn.

grid points along the quasi boundary extending from tho
positive blade surface on the ~plmm (shown in fig. 8). If
equation (E2) is not eatiefiedby the values of $’, x*, ~,, and
*. remlting from the initial relaxation solution (section I),
the values of #~ along the downstream boundmy are adjustd

by methods given in appcm.iix E. As a result of tidjusting
#~ the values of # at all other grid points in the flow field arc
changed by amounts that are estimated by methods devel-
oped in appendix E.

Upstream whirl ratio hut—If the upstream whirl ratio is
satisfied, the whid ratio at any point in the region of uniform
flow upstream of the Madee is equal ta lho prescribed value
Au,and #i at that point is given by squation (F2) dcvclopcd
in appendix F

(F2)

where #1* is the value of #t if the spcciticd vahm of Xu is
obtained. In general, equation (F2) is cvah~ted at
the upstream boundary where, hccause conditioue are
uniform, t! is constant. If #f obtained from tho initial
rel~xation solution (section I) k not equal to the value 41*
given by equation (FZ), the \’aIueaof #u along the upstream
boundary are adjusted by methods given in appendix F.
A a rcstit of adjusting #u, tho vatucs of # at all uthcr
grid points in the flow field are changed by amounts that me
estimated by methods developed in appendix l?.

It should be noted that the corrections for & affect tho
Joukowaki condition, and vice versa. For low-solidity
blades these interrelations should be considered, but for
high-solidity blades the effect of ehangoe in #n on IWand tbo
effect of changes in #u on the Joukowski condition are gen-
erally srnalland ran be neglected.

After the vake of t~ and vu havo been adjustwi and the
resulting changes in # at the grid points in the flow fieid lmvc
been esthnated, the relaxation methods are rcpcatcd to
eliminate the small residuals that reaul~from the new values
of # atthe grid pointa in the flow field. After the correct dis-
tribution of # has been determined, the proasurc and vclocity-
ratio distributions can be obtained from tho dcneity
ratio and equations (4a) and (4b). If more dctailed infw-
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mation of flow conditions in certain r@ms of the flow fleId
is desired, the grid spacing b can be reduced and the relasa-
tion methods repeated in these regions.

hcnreoy.-~o quantitative evuhation of the accuracy of
relaxation adutiona is awdable (reference 10, p. 176).
Because the computed velocities depend on differences in
the values of # at adjacent grid points, that is, the smaII
difference of large numbers, however, it is important to know
the vahm of # with mdlicient accuracy to assure the desired
accuracy for the velocity calcuhtions. In the numerical
esamphmof the present report, the values of # were computed
to the neared 0.00001 compared with the maximum value
of $, at the negative bIade surface, of 0.15700.

NUMEltlCALEXAMPLE2

Two numerical examples are presented; one for compreeai-
ble and the other for incompressible flow through the im-
peIIer of a centrifugal compressor. Both examples are for
the same impeller geometry with the same tip epeed and
weight flow.

Flow ffeld.-.l diagram of the impeller and vanek por-
tionof the dii7userisshown in figare9. The cone angle a,

shown in figure 9, is 180” (radial-flow compressor),but the
solution applies to certain other cone angh Iess than 180°
(mi.xed~ow compressors) given by equation (20) for an
integral number of simiIarpassages1? with the same inc~uded
angle M between blades on the conic flow surface. (See sec-
tion E@alent turhomsohines with different o.one sngles.]
The solutions are obtained in a flow fieId (&g. 9) that. ia
considered to be unaffected by the inlet con6guration of
the impeIIer and by the dMuser vanes (if any); that is, the
impeller inlet and the timer wmea must. be far enough
removed not. to affect the flow appreciably in the flow field
investigated. In this flow field, the impelIer bIadea are
thin and straight and the passag~height ratio H mriea in
such a manner that the flow area normal to the cotic flow
surface remains constant.

The wdues of the stream function along the boundary
between bkks (l?= O.6752 in@. 9) are determkd from a
simpIiM analysis (appendi.. G), which assumes that for
straight thin bIades the component of the relative flow
normal to the bIadeaiazero. This assumption is satisfactory
(appendi.. G) at radius ratios within the impeIIersuflicientIy
far from the tip (at radius ratios lees than 0.80 for the
numerical exampka of thk report).

Transformation of coordinates.-For thin, straight blades
lying on conic radii (elements), the transformation of co-
ordinates is given directly by the analytic function

from which

and
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so that, from equationa (16a), (16b), and (16c) the coefE-
cienta in equationa (18) and (19) become

Ui=o

and

fioompressible soMion,—The inmmpressible mIution
was obtained from equation (18) for the same impeller-tip
Mach number MT and for the same flovi coe5cient # used
in the compressible solution but with the density ratio p/p,
consant and equal to 1.0. Because for incompressible fluids
the speed of sound is Mnite, M=, d, and the velocity ratios
for the incompressible solution are fictitious quantities, the
definitions of which contain a constant, finite speed of sound
that is equaI to c. for the compressible solution. The same
value of the impelle~tip speed (and of the compremor flow
rote) therefore results from the same vahe of M= (and of #)
for the compreesible and incomp-ibIe adutions.

Design oheraoteristioa -d operating conditions.-ll%e
numerical examplss have been computed for the following
design characteristics and operating conditions:
Design characteristics:

(lj

(2)

(3)
(4)

(5)
(6)
(7)
(8)

Constant flow area normaI to conic flow surface,
H= R-l

Cone angle a, MO” (orcertainother valuesof a leaa
than 180° given by equation (20) for the same due
of Ad but for Merent i.ntegnd values of ~J

Straight thin blades along radii
ATumberof bIades l?, 20 (or other integral values of B

lem than 20 for the same wdue of M but for certain
diEerent values of a h than 180° given by equa-
tion (20))

~ ratio upstream of blades Xa, O
Tip Mach number J& 1.5
FIow coefficient #, 0.5
Ratio of specific heats ~, 1.4 (for oompmible solution

only)



RIWORT 93&NATIONAL ADVISORY

w
—.. --- —

Rektivi ‘-
9 freandinee

-..

Anqfe, deg _

(s) Compredbk+nowexunph.

From lo.-rtehthe mmamb?a kufiwibron@~awm~ TdthStmtght
tkk atimnunb&8QMtbn iudtirntb aftihtwean~ md @tlva
MallmurEloe(rlEht@l@lM!@tototdHhroll$=ihul@JWloWBc&
lLF;impelktlp Machnudxr, L&fiowmfildmL ;

From equation (2o) the included angle A? between bladea
on the conic flow surface is equal to I&o. The resulb of .t.he
numericsl examplw are presented in @urea 10 to 12. Thwe
6gures are discussed in the following paragraphs.

Streamlines.-The streamline configurations (relative to
the impeller) for the two examples are shown in figure 10.
The streamline are designated in such a manner (#/#J that
the value of a streamline indicates the ratio of the flow that
lies between the streamline and the positive blade surface to
the total flow in the passage. For a given density ratio, the
streamline spacing is indicative of the velocities relative .to
the impeller, with close spacing indicating high velocities
and wide spacing indicating low velocities.

In the C.ompressi%k-flowexample (@. 10(a)), & ed& is
attached ta the positive blade surface. The fluid in this
eddy rotatsa (relative to the impeller) in the oppc=eitedk
tion to that of the impeller so that the ab801tdemotion of the
fluid is irrotational. ‘Ilhe size of the eddy (for a givtm im-
peller) depends on the relative magnituda of the volume
flow rate through the compressor and.the impellmtip speed.
If the flow rate is zero through the rotating impeller, the eddy
occupies the entire flow passage and M tbe eompreasor flow

COMM~ FOR AIUtONADTICS
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rate incrsases (for the ssmc impclh’r-tip speed) the wlcly do-
meases in size until it fimdly disttppwws. The flow rate at
which the eddy disappcttrsincreases as t.hcimpcllm-[ip tqmd
increases. The eddy doos not mist in the incomprcwilJc-
flow example (ftg. 10(b)) bemuse, althuugh lhu wright Ilow
mte is the same for both examphs, tlic oohmc flw rntc i~
higher for the incompressible-flow cxttmpleas a result of tho
lower fluid density in the region investigated.

The flow directions in the vanelc= difluscr arc greatly
difkent for the compmssiblc- and incomprcssibl~fkm’ c.x-
amples. (Compare figs. 10(a) and 10(b).1 Thii diihertco
resultsfrom the higher volume flowrat.efor thuinmmprm!!ilde
flow example. This higher volume flow rate rcquiros
higher radial velocities so that for the same hmgcntinl
velocities the flow directions are different in the two cxnmplm.
(From emwiderations of Constant moment of momrntum in
the vaneleaadiffuser, the tangential velocities should l.wshout
the same in both examples becttuso the tangentid vrloeitics
are about the same at the impelkw lip. S(X sulwcqucrl~
section Lines of oonstmt pressure ratio.)
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Linesofoonatant relative velooity retio.-Lines of constant
veIocity ratio relative to the impeIIer are shown for the two
exampka in 6gure 11. The constant c. in the denominator
of the velocity ratio is the same for both examples and is
equal to the absolute stagnation speed of sound upstream of
the impeIler for the compressibleflow example. The general
chamcteristics of these plots are eider. The veloatiea
along the negntive blade surface are higher than along the
positive blade surface ucept at the tip of the blade where
the velocities become equal on both blade surfaces (as w
quired by the Joukowaki condition). The maximum velocity
occurs on the negative blade surface at a radius ratio well
within the impeller and the flow decelerates aIong the surface
of the blade from this point to the bIade tip. This decelera-
tion, which becomes rapid near the bbde tip, ia conduci~e to
boundary-layer separation, which lowers the compreimor
efficiency. If the boundary-layer viake m the vanekss dif-
fuser ia negkcted, the velocities become eaaentidy uniform
at a radius ratio of about 1.15.

In the compressible example (fig. 11(a}), the velocity
ratios are low at the impelIer tip because of the high density
ratios that result from the high tip speed of the impeller.
These velocities would be coneiderabIy higher if the eflwtire
fiw area were reduced by boundary-layer separation, which
might be expected in a real compressor.
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I&Is of oonatantpressure ratio.-ties of constant static-
P~ ratio (Iocal static pressure divided by absolute
stagnation preawmeupstream of the blades) are ahown for
the two munpka in figure 12. The geneml characteristics
of iheae plots are the same. The pressure is higher on the
positive bIade surface than on the negatire blade surface
cccept at the blade tip where the pressures are equal. This
diilerence in pressure accounts for the impelIer torque.

The higher pressureratioe in the compreseibldlow esampIe
than in the incompr=ibl-flow example result km the
Iower relative velody ratioa in the compressible-flow ex-
amp~e and from the fact that for the same amount of work
per pound of fluid the pressureratio is greater for compressible
than for incomp-ble fluids. -t the work per pound
of fluid is about the same for both examples at corrwqmnd-
ing po”mtsis seen from the Iast term in equation (8). This
term is the wok per pound of fluid find has about the same
mhws for both exampka because the whirl ratio k ia deter-
mined principally by the tangential motion of the blades,
which is the same in both mmpks.)

~p faotor,—The impelkr sLipfactor is defined as the ratio
of the average absolute tangential velocity of the fluid at the
impelIer tip to the impelktip speed. A method for com-
puting the slip factor from a rehmation solution ia outlined
m appench H. The dip factor is 0.899 for the compreaibIa-
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flow emmple and 0.892 for the incompressible example.
It is ooncluded that the slip faot.m are esmntialty equal
for both examplw.

CompresdbiIity efYeeta,--F~ure 10 indicata a Iarge com-
pressibility tiect upon the streandiue conjuration in bigh-
speed, rotating, radid- and mixed-flow blade systems.
F- 11 and 12 indicab large compressibility dlecta
upon the magnitudes of the velocity ratios and preaeure
ratios, but the distribution of these quantities is similar.
@’or example, the veIocitiea accelerate and decelerate @
approximately oorreeponding positions of the flow field in
both examples.) It is ooncluded that, if the fluid in high-
speed, rotating, radial- and mixed-flow turboma-. is
oompre&ble, incompressible SCJutionegive poor quanti-
tative reeult8 (exoeption, the slip factor) find, in some
reapeota, poor qualitative remdts.

SUMMAItYOF RESULTSAND CONCLUSIONS

A gemeralmethod of analysis has been deveIoped for two-
dimeneional, steady, cambble flow in stators or rotors of
radial- and mixed-flow turbomachines with arbitrary bIade
ahapea, arbitmry variations in the passage height, and with
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~auss lL-Cawludd. LhesofcmMsnt~mtlo(bml Mtb~dlvtd,U by
ahNntauasmtbn~ -m ti lm@er).

conic flow surfaces (surfacea of right circular conos gonernted
by center line of flow passage in axial-mdkd plane).

The analysis indicates that: (1) The edution dhind for
a given turbomachine also applies to certain other (equiva-
lent) turbomaohinea with a larger or smallcr number of like
passages (same spacing of the blades on the conic flow mr-
face, same bh.de-tthicknese distribution, and so forth) but
with dithrent oone angles; (2) for the eamo number of
similar blades, the blade loading is less for mixed-flow than
for radial-flow turbomachirm; and (3) any sdu[ion obtained
for an outiow turbomachine with shocklcse (smooth) entry
is also the solution for an inflow turbomachine with shockkss
entry and with the How direction and blado rotation (if any)
reversed.

Two numerical examples are prmimted-cmc for comprce-
sible and the other for incompressible flow in a centrifugal
compressor with thin, straight bladea lying on conic radii
(elements). The solutions were obtained in a region of the
comprweor, inchding the irnpeIIer tip, thaL was assumed
to be unailected by the tit configuration of tlw impelh’r
or by the diffuser vanes (if any). Both examples am for
the same impeller (18° inoluded anglc bctwccn ldadca on
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the conic flow mrface) with the same tip speed (equivalent
to a tip Xlach number of 1.5 for the comprkiildow
example), with the same flow rate (flow codlicient, 0.5},
and with constant flow mea normal to the conic flow surface.
The following results were obtained:

(1) In the compr~ldow esample, an eddy is attached
to the positive blade surface. The fluid in this eddy rotates
in the opposite direction to that of the impelkr. This eddy
doea not esist in the incompressible-flow esample.

(2) In both ~ples, the maxbnum veIocity occurs on
the negative blade surface at a radiua ratio well within the
impeller and the flow decelerates along the surface of the
bIade from this point ta the blade tip. This decelemt.io%
which becomes rapid near the blade tip, is conducive to
boundary-layer separatio~ which lowers the compresmr
e%icienq

(3) If the boundary-layer wake in the vanelesa portion
of the dither ia neglected, the velocities become essentially
uriform at a radius ratio of about 1.15.

(4) The dip factor is 0.899 for the compreaeibh-flow
example and 0J192 for the rncompresaiiIe esample. It is
concluded that the eIip factora are ewntialIy equal for
lmth Caaes.

(6] If the fluid in high+peed, rotat~ radid- and mixed- . .... .
flow turbomachinea is compressible, incompr&iiIe scdutiona
give poor quantitative mndta (exception, the slip factor)
and, in some respects, poor qualitative results.

kvcIs fiGHT PROPULSION LABORATORY,

W~02Tu ADVISOEY ~OMmEE FOE AEBONAUTI~,

cumErMCo,Oreo, Norember 1,19.48.



APPENDIX A

SYMBOLS .

The following symbols are.used in this report:
flo~ areaof anmdue at tip of bIadee
number of bladea (or passages)
grid ~pa@ (@,?)
10CSIspeed of sound
specific heat at constant prwsure
Cartceian coordinate in transformed ej-plane,

equation (Cla)
exponential, [ezp(z) =eq
any tmiceditlerentiable function of two variablea
Cartesian coordinate in transformed ej-phme,

equation (Clb)
accekration due ta gravity
p~height ratio, h/hr
passage height nornd to conic flow surface (fig. 1)
mechanical equivalent of heat
blad~tip Mach number, equation (6)
relative velooity ratio, ~e,
velocity of fluid relative to bh.dee, ~’
conic-radius ratio (coordinate of conic flow sur-

face, R&plane) (fig.2), r/rr
rtidutd
conic radius (distance along conic element from

apex of cone) (fig. 1)
static (stream) temperature
relative tangential-velocity ratio, u/cO (fig. 2)
tangential component of q (positive in direction

of increx 0)
radial-velocity ratio, o/c. @g. 2)
rsdifd (along conic ekunent) component of q

(pceitive in direction of inmeaaingradius ratio)
total flow rate through turbomachine
flow rata betwsen streamlines
cone angle (@, 1)
dimensionless rdmolute.circulation
ratio of. specific heata
angular bhde spacing (iicluded angle between

blade camber lines in lWplane), equation (20)
changes in # at grid pointe
Cartkdan coordinate in tramdormed +plane

(corresponds to incompreesible stream function
in nonrotating Ed-plane with constant passage
height, H= 1),equation (13a)

angle (coordinate of conic flow surface, Z?&pIane)
(*. 2)

whirI ratio, equation (9)
204

t

P
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u

Cartesian coordinate in transformed ~-phmo
(corrqcmde to incomprcssiblc vclocity potcu-
tial in nonrotating Z?t?-plaucwith constant pfls-
sage height, H= 1), equation (13a)

weight density of fluid
flow coefficient, equation (!24)
dirneneionlesa, comprcesiblc stream functiou,

equations (4a) and (4b) ““ ‘“
angular vclocity of rotor (in direction of inmm-

iig 8)
Subscripts:
A,B,C ‘- grid pointsdc.fmedin figure 7
a,b,c,d grid points defined in figure 8
D -”- downstream boundary (boundary in rcgirm of

uniform flow domstrcam of blades) (fig. 4)
i indica~ that u~,u~,and qi, obtained from dcriva-

tivee of i@,O) and q(lf,d), correspond to incom-
pressible velocities

n negative blade surface (blah surface in direction
of decreasing t?) (fig. 4(a))

o absolute stagnation condition in ~ion of uniform
flow upstream of iJaf.Ic9

P. positive blade surface (blado surfaco in direction
of increasing 19)(fig. 4(a))

T bhule tip (either nose or tail of blade, whirhcvcr

has largerconicradius)

u upstream boundary (boundary in regionof uni-

form flowup&ream of blades)(@.4)

f?,6,&q,e, partialderivativeswith respectto thesecoordi-

and j natea

RR, M, second partial derivatives with rcspcrt to th~c
H, m, coordinates
~, ee,
and J

1,2,3,4.. grid points adjacent to point being cousidmwl
(fig. 3)

Suparscriptw
b’ nonuniform grid spacing defined in figure 7
A#i change in # (a~ any grid point) resulting from

A#D required to satisfy Joukowdd condition
A+’< change in # (at any grid point) rcaulting from

A#D equal to uniky
@ adjusted value of # (at any grid point) after

Joukowski condition is satieficd
$4” value of $! (at any point in region of uniform flow

upstream of blades) if spccifiwl values of XUis
obtained, equation (F2)

—



APPENDIX B

TRANSFORMATION OF COORDINATES I?EOM R8-PLANE TO fq-PIuiNE

If the transformation of coordinates from the R&plane to
the a-plane is represented by the analytic function

t(~,q +WW) =f[~ =P ml (13)

where the coordinates t and ~ m the &plane correspond to
velocity potential lines (~=constant) and stremdines (q=
mnstant) in the W-plane for incompre&Je flow past the
blades, which for purposes of the transformation me con-
sidered to be stationa~ (a=O) and to have a constant height
(H= 11, then

b~g= —qE=R (16a)

Ut=;=k (16b)

AlaG,if F ie any twice-differentiable function of R and 6

F== F&+F~n

Fm=F&&gS+2F&Eq~+ FWqJ+F&m+F,ms

Fg=F&-I-FqW

}

(M)

Fm=F@+2F&sw+ Fmw’+ F&+F,W

Fmxn equations (16a), (16b), and {Bl), equation (7)
Iwcomes

and, because equation (13) is analytic,

so that equation (7) fmalIy becomes

Equation (12) in I&e manner becomes

Qfa=g(w+w (15)

29s



APPENDIX C

&(R#) AND q(R#) FOR ARBITRARY BLADE SHAPES

The coordinates.~ and q of the transformed Wpla.ne are
functions of R and @and correspond to the veIocity pote.ntial
~(l?,fl) and the stream function q(Z?,f?)for incompressible flow
past bladse of arbitrary shape in the physical R&plane,
which blades me considered, for purposee of the transforma-
tion, to be stationary (a=O) and to have a canatmt height
(EI= 1). In order to determine $(27,8)and ~(l?,d), it is con-
venient fit to transform the blades from the Ed-plane ta the
qf-plane (e~ Cart.dan coordinates). This transformation is
given by

e+~=lo~ [R twp @F)]

from which

e=Iog, R (CIR)

f =0 (Clb)

Equations (Cla) and (Clb) relate points in the ej-plane tc
points in the Rfl-plane and determine a new blade shape in
tie ej-plane (fig. 13) that corresponds to the original (arbi-
trary) blade shape in the l?d-phme (fig. 4(a)). In eflect the
radial cascade in the lh-phme is transformed into an axial
cascade in the e-f-plane.

The stream function ~(efl in the @plane is dcterminrd hy
the rekation solution of hplace’s equation

%+ %Y=o (C2J

for the epecifled lmundary conditions; and the vclocii y
potential f(efl is obtained from V(.S3 by methods diicwa.mi
in reference 7 (&. IV). Finally, ~(l?,d) and I@?] arc de-
termined from ~(efl and ~(efl and from oquatione (Cla) and
(Clb).

In order to solve equation (C2), it. is fimt necoesary to
determine the boundaqy conditions. I-lccausc the distribu-
tion of the variations in q tdong lines of constant. c in [Iw
ej-plane is cyclic with a period equal to the blade sparing,
the solution of equation (C2) need be ohtaincd ordy in a
region (@. 13) bounded by the surfaces of two adjaccnl
bladea,by Iinesof conetnnt e thtitcorrcepoml in thelh%plan~to
the upstream and downstream boundaries of tic comprcseil.dc-
fIow field (fig. 4 (a)), and by quasi boundaries extending along
lines of.constant ~ from the cnda of the bhdc surfticesto tlw
upstream and downstream Imundarice. (Note that tlicsr
quasi boundaries do not gcncmlly, and ncwl not, correspond
to the quasi boundaries selected for the comprcseil.h-(low
field (lines of conekmt n). Sec f%. 13.)

~ter the location of the boundaries has l.wcn determiuwl,
a grid of equally spaced points is placed inside the lmumlurics
(@. 13) and thisgrid is cxteudcd to points on the Ixmndnrirs.
The grid points on the blade boundaries generally arc un-
equally spaced from the interior grid points lmmusc of thv
arbitra~ shape of the blades. VaIucs of q at points along
the quasi boundaries extending from the ncgativc lhlr
surface are directly related to values of ~ at points along I.lN
quasi boundaries extending from the poeitivc blade surfacr
(eee related discussion in section # along quasi boundaries
extending from positive bIade surface) and, thwcforc, oniy
the valuea of q along the quasi boundaries cxtomling from tlw
positive blade surface need be recorded (fig. 13) and rdad.

The values of T at the grid points on the boundnrice arc
next determined. The boundary values of q at grid point.q
along th~ blade surface are arbitrarily ad equal to O along
the poutme blade surface (fig. 13] and equal to 1.0 tdong the
negative blade surface. The valuoa of ~ at grid points along
the qu~ boundaries extending from t.hcpositive blade surface
are estimated in such a man.mr that the front mid rear
stagnation points occur at the intersection of the mmn
camber hne with the surface of the blade at tlw nose and thr
tail. The direction of the streamlines is then approximatdy
equal to the direction of ho blado cambm tine at tile ends
of the Made. This direction is dc6ncd in the cj-p]anc lJy

tan13=g (C3)

296
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But along a streamline, dq equals zmo so that

dq=o=~tie+~~f

(C4)

Also, if uniform flow is assumed upstream and downstream
of the bIades, then from equation (Clb) and the specified
boundary conditions

Therefore, from equations (C3), (C4), and (C6),

(C5)

(C6)

This variation in q with e determines estimated dues of q
at grid points aIong the quasi boundaries extending from the
positive blade surface and in particular this variation deter-
mims the valum of ~ at the intersections of these quaai
boundaries with the upstream and downstream boundaries
(fig. 13). Along these upstream and downstream boundaries,
the values of ~ increaseunifomdy (steady-flowcondition)

in thepositivedirectionofj at a unitrateper bIadespacing.

Mer the boundary values of q have been determined,
dues of mare estimated at the rnterior grid points. These
estimated rahxeeare genemlIy in error and must be corrected
by relaxation methods in which equation (C2] is nsed in
titedtierence form to compute and to relax the residuals.
In addition, the values of q along the qyasi boundaries extendi-
ng from the positive bIade surface were intimated vahms
and must therefore be relaxed. Mter the solution for the
distribution of T has been obtained, the condition that the
stagnation points occur at the nose and the tail of the bIadeeis

checked (by methods similar to those in appendi~ E) and,
if not satied, the wduee of ~ at the grid points along the
upstream and dowmtream boundaries are adjusted (by
methods similar to those ouilined in appendix E).

The function q(efl is now Imown and #(efi can be deter-
mined from q(eJ) by methods given in reference 7 (ch. IT).

The functions I@,fl) and E(l?,d} are obtained directIy

from ~(efl and ~(e~ and from equations (Cla) and (Clb).
A@ from equations (16} and (Cl), the coeflicienta ui and
mtin equations (18)and (19) become

uf=—qE=— ~a
1? (C7a)

(c7h)

The relaxation sohtion of equations (11),(14),and (15)
in the transformed &pIane requires less time than the solu-
tion of equations (7], (11), and (12) in the physical Rfl-plane,
because bIadea with arbitrary shape in the physical plane
become straight and pandlel in the transformed plane,
which resuIts in simpler flniteditTerence forms for equa-
tions (14] md (15). The transformation of coordinates to the
fq-plane is time-consuming, however, so that, if a scdution
for only one set of operating conditions is desired, it would
probably be faster to solve equations (7), (11), and (12) in
the &pIane where, ahhough the finite-diRerence equations
must contain coefEcienta to account for the unequal grid
spacing along the irregdar boundaries, the transformation
of coordinates isgiven directly by equations (Cla) and (Clb).
If, however, solutions for a number of diilerent operating
conditions for the same bIade configuration are desired, then
the transformation of coordinates outhmd in thw appendm
is desirable, bemuse the same transformation appks to all
sets of operating conditions for the same bhide configumtiom



APPENDIX D

ESTIMATED VALUES OF # AT GRID POINTS ALONG QUASI BOUNDARIES EXTENDING FROM POSITIVE BLADE SURF7iCE
IN #FPLANB

Estimated. vahxw of the stream function # at grid points
along the quasi boundaries extending from the positive blade
surface in the &plane can be obtained by assuming, as a
first approximation, that the flow conditions upstream and
downstream of the bladea in the R&plane are uniform, that
is, the flow conditions are a function of R ody. From the
conservation of absolute moment of momentum (whirl)
upstream and downstream of the bIadee

A=lZ(RMi+ U) =constint @l)

m that equation (4b) beoomes

“’2H@’-*)Pe
@2)

In addition, beoauee the ilow ia considered uniform

~o=constant=~ (D3)

The variation in $ along the ,qusaiboundaries in the &plane
(fig.6)iathengivenby ~~

#&=ihZ%+$dt

which, from equations”(D2~atid (D3) becomes

‘@(wr-0~+%8~
@4)

where RI and Otare obtained from equations (13a) or ap-
pendix C. Equation (D4) ghw the estimated variation iD
# along the quasi boundaries extending from the poeitive
blade surface in tie &plane.

In order to integrate equation (D4), it is necessary to
know the variation in density with E. The detity ratio is
given by equation (11)

.

P

{
- = 1 +~+1 [(nM#

Pa
–Q–2M,$ (11)

298

where, from equation(3a),

Q&p+ ~~: (-D5)

But, from continuity considerations assuming uniform flow,

()

~-= . L’
~ 17R

(DG)
—

ao that, from equations (Dl), (D6), and (Do),

and equation (11) becomes

Because”R is a known function of f and q (equation (130) or
appendix C), the aystmu of cquationa @4) and (Di) can IJC
solved by numerical methwla to obtain (J1ovalue of # at
grid points along the quasi boundarica cxtmding from the
positive blade surface in the &plane (@. 6).

Tha valum of # depend on the value of h. Upstream of
the bladea x has the specified value ku. Dmvnshwun of tho
bhdee x has the valuo k~, which for a given blade shapn and
operating condition, is determined by the Joukoweki condi-
tion. & a result of the Joukoweki condition, t.ho average
flow direction at the @ from the lhdcs is approximatdy
eqmd to tho blade-exit angle (determined by the mean
oamber line). An average value of U, requiredinequation(0)
to mmputi ~ =timated vtdue of kDJ can thereforeb~

obtainedfrom thisangIe (adjuetcdas experienceindicates)

and bm the average value of V given by canlinuitycon-

siderations (equation(D6)).



APPENDIX E

METHOD OF ADJUSTING VALUES OF # ALONG

The Joukowski condition requires the reaxstagnation point
to occur at the bhide taiI, or, in case of irdinitely thin bIades
or blades with cusped tails, the flow must be tangent to the
blade surfaces at the tail. (If the bIade tail is somewhat
rounded, the stagnation point is considered to occur at the
intersection of the mean camber Iine with the tail surkoe
of the blade.) In the &plane (&. 6), this rear stagnation
point occurs at the tail of the thin, straight blade. (See
appendix C.) This condition generaIIy is not eatied by
the initial rdsxation solution for # m the &plane, because
for this scdutionthe values of # aIong the downstream bound-
ary (tn) were obtained from the estimated variation in #
along the quasi botmdariee (appendix D). In order to satisfy
the Joukoweki condition, the values of # at the grid points
along the downstream boundary (~~) must dl be changed
the same required amount (A#D). This change in #D

(denoted by A#D) results in changes in # (denoted by Ax)
at each of the interior grid points and at the grid points
aIong the quasi boundaries. The manner in which the values
of $ are changed by the change in *D must satisfy the di&-
ence equation (18). Therefore,

(X~+AW + (#:+@a)+ (k+AW + (#4+MJ–4(#+A~)–

MI+fM) (–(#a+4h) Io~, !?&Iog, ~)–
4 Pe

(#s+M) ; (#4+AIh) log,eL~og, & _

( P* )Po

@l)

where the change in density ratio reeuhing from At is con-
eidemd negligible. Subtracting equation (18) with R equal
to zero (which condition bas been sattied by the init~hd
relaxation) from equation ml) wults m

[(k, ~1–h% &)m- (log. H,–log. H&LJ= R (Ela)

Each of the last three terms on the left sideof equaltion(Ela)
conaieta of the product of two quantitiesthatapproach zero

as the grid spacing b approaches zero. For the small grid
spacing used in relaxation solutions, these terms are the=
fore of secondary importance end maybe negIected so that

Wl+A$Z+Wa+Wr4A$=R @lb)

DOWNSTREAM BOUNDARY TO SATISFY JOUKOW’SKI CONDITION

The scdution of equation @lb) determines A* at every
grid point for a sptied vahe of MD. Because of the
linearity of equation (EIb), the solution for any spe&ed

._—

vfdue of A#~ is equal to the solution for ~#D= 1.0 mukiphd
by the sp~ed value of A#D. That is, A# (at any grid
point) resulting from a epecii%d value of A#D is equal to A#
(at the grid point) resulting forA#D= 1.0 multiplied by the

—.—.

apeci&d VdUS OfA#D.
The procedure for the ecdution of equation @lb) is the

same as for equation (18). The bounda~ vahes oft along
the blade surfaces and a.Iong the upstream boumhry (~. 61
are not changed so that At must equal zero along these
boundaries. The value of At along the downstream bougd-
UY (~. 6) is set equal to unity.

..-——

The magnitude of A#D required to satisfy the Joulmwski
condition can now be determined as follows: If the rear
stagnation point occurs at the blade tail (Joukowalii ~~-
tion), then the extrapolated wdue for # at the grid point on

—.—

the bIade tail of the positive bIade surface obtained from
the vahm of t at succeeding points along the quaai boundary
starting at the bIade tail must equal zero. The extrapolated
vahe of # at the blade tail using a thirddegree polynomial
and the fit four points along the quasi boundary is given by

where the subscripts a, il, c, and d refer to the grid points
aIong the quasi boundary in figure 8. If ~m~equals zero,

O=4#sS—6#bt+4h’ —#ii (E2)

where #’ @i@es valuea of # after the Joukowski condition
is eatiefIed. But,

#’=~+A#’ @3)

where # is the stream function obtained by the initial
relaxation and A#f is the change in # that results when the
Joukowski condition is satia6ed. AIao, from the fit part ‘“””
of this appendi~,

A+i=A#~A#cc (E4)

where Axif is the change in x (at any grid point) ramlting
hm a tit ch8nge in #D (A#D= 1.0) d A$D b the c- h

$D I’SC@Id tO SELt:i@ the Joukoti COIUhtiOIL hrC.fOIW,

from equations @), (Q, and (E4))

—4$.+6#b-4#.+tie
(E6)w“=4A#JLf3A#*f*+ 4A#’~-A#.”

Equation (E5] determines thch~k#’Dreq&db
satisfy the Joukowaki condition. The changes in # at aU
other grid points are obtained by multiplying A$f~ at each
grid point by A#D. Because the scdution for A@ is approxi-
mate, the ~ulting veluMI of +{ must uaudy be rela..ed to
ellminate small reaidualecomputed by equation (18).
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APPENDIX F

MEI’HOD OF ADJUSTING VALUES OF # ALONG UPSTBEAM BOUNDARY TO OBTAIN SPECIFIED WHIRL RATIO ~

In gened, the specitled whirl ratio upstream of the blades
&is not obtained by tlm initial rehtxation solution, because
for this solution the values of@ aIong the upstream boundary
(h} ~em Obbined from the estimated variation in # along
the quasi boundaries (appendix D). In order to obtain the
spded value of hutthe values of # at the grid pointi along
the upstrewn boundary (#u) must aII be changed the same
required amount (A#u). This change in $V (denoted by
A#u) results in changM in # (denoted by Ax) at each of the
interior grid points and at the grid points along the quasi
boundaries. The eflect of A+u on the valuea of A# is deter-
mined in the same manner sa the eihct of A#D on the values
of At (appendix E).

The magnitude of A#u required to obtain the speci&d
value of Au can now be determined as follows: Near the
upstream boundary in the region where flow conditions are
essentially uniform, tie whirl ratio h is constant and equal
ta b. In this region equation (9) gives

X.=ll(l?ilf,+ Z7) (9)

where Z7is related to the variation in #by equation (4b)

$E= —; UH (4b)

But,
#R=#&+#,m (Fl)

where for uniform flow conditions

#,=#a

so that, from equations (Ma) and (ltlb), equation @’l)
becomes

$R=$t%–$mut @la)
300

Therefore, from equations (l?la), (4b), and (9)

where *E* isthe value of ~~ at any point in tho region of
unifomn flow upstream of the Madea ifthe specifiedwhirl

ratioXv isobtainedand where pjpois coneidcrod to lx given
by the initial relaxation solution. (In gencraI, equation (I?2)
is evaluated at the upstream boundary where, assuming
conditions are uniform, *1 is constant.)

If #~is obtained by the iuitial rchtxat.ionsolution at L11O
point being ccmeidercdin tho region of uniform flow, the A#u
required to obtain the value of $1* {cquat.ion (F2)) corre-
sponding to the specified value of & is given by

(F3)

where (A#)t is the variation in A# with & at the poin~ bciug
considered, for a unit change in #u. Equation (F3) d@w-
minee the change in #u required to obtain the specifird wduc
of b.

The r.esuh.ingchanges in #at Lhc interior grid points nnd
at the grid pointe along the quasi botmdarioe are dctw’mined
from A#u in the same manner as the chnnges in # were deter-
mined from A#D in appendix E. It should bc noted that thr
correction for ?WwiII affect the Joukoweki condition, and vice
versa. For higl.wdidity blades, hovrevcr, the cfkwt of A#n
on Xu and the effect of A*U on the Jwdcowski condition is
generdy small and can be neglected.

. .



SIMPIJFIBD ANALYSiS FOB ROTORS WITH

The rchation methods ueed in this report are lengthy.
It woukl therefore be advantageous to have a quicker, al-
though leaaaccurate, means of estimating the flow conditions.
In thie append~, a simplifmd analysis is deve.topedfor rotors
with straight blades along conic radii.

Velooi@-ratio Wributiom-!l?his simplified amdysia is
based on the assumption that for rotors with straight blades
along conic radii the tangential component of the velocity
ratio dative to the bhd= is zero within the rotor. Equa-
tion (6) therefore reduces to

which, when integrated, becom=

v= v,+2R&tl (G2)

where the subscript p refem to the positive blade surface at
which surface the angle # ia coneiderd zero. Equation (G2)
gkes the distribution of the radial component of the velocity
ratio across the passage at constant values of l?. The con-
stant of integration 1“, is determined at each value of 1?
from considerations given in the next paragraph

Stream-funotion distribution.-hm continuity

or

(m)

The density ratio ia given by equation (11) with Q equal to
V (bemuse I??is assumed equal to zero) and Via given by
equation (G2) ao that equation (G3) becomes

where the left side of equation (G4) was obtained from
equation (21). Equation (G4) is integrated from the posi-
tive blade surface where # and 8 are considered equal to
zero so that

Equation (G5) gives the distribution of # across the

-1

(G5)

passage

STBAIG~ BLADBB ALONG CONIC BADII

at conetant valum of l?. The veIocity ratio V~ varies with
R and ie obtained from equation (G5) for the condition

$=$.
when

0= e.

If the fluid is incompressible, the distribution of # becomes

#=m(T;t9+RM~

Mmnmiosl example.-The simpI@i andysia hae been
appfied to the compreeeibldlow ~ple in this report and
the resh me compared tith those of the rek~ation solu-
tion. The velocity ratio ~7Falong the positive bIade surface
has been computed from equation (G6) and the results are
compnred in @me 14 with the relaxation soIution. The
negative. values of V= occur where the eddy (fig. 10(a)) is
attached to the blade. The agreement between the re-
laxation solution and the simplitkd edution is satisfactory
up to a radlua ratio of about 0.80. For radiua ratios greater
than 0.80, the agreement is unaatiafactory because the
assumption that ifl and its derivative me negligible is no
Ionger did.
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The velocity-ratio distributions aorosathe passage at radius
ratios of 0.760 and 0.855 havehen.eornputed from equation
(Q2) using values of 17, obfiined from equation (Q5) and
the results ma compared in @ure 15 with the relaxation

scdutiort.At the 0.760 radius ratio, the velocity distribution
is neady the same for both solutions, but at the 0,855 radius
ratio the simplified achtion has begun to deviate km the
more rigorous relaxation adution.
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The stream-function distributions across iho presage at
radius ratios of 0.760 tmd 0.855 Law bwm computw.i from
equation (G6) and the results are compmerl in Ogure 10
with the rchuation solution. At a radius mtio of 0.700 tho
stream-function distribution is ucarly tho same for both
sohtiona, but at 0,855 ths shnpfifird sdutiou has begun to
deviate appreciably from the rchxxation soh~tion.



APPENDIX E

PROCEDURE FOR COMPUTING IBIPELLEE SLIT FAtXOll

The impeIIer alip factor for centrifugal compreama ia
deihed as the ratio of the average abecdute tangential veloo-
ity of the air at the impeller tip to the tip epeed of the
impeller

(arr ain ~+u
Slip factor= ) u.,

“=1+==
@l)

Ct?rrah;

The average value of the tangential-velocity ratio rdative
to the impelIer at the irnpeIlertip ia obtained from

or

u.,=p+J,mUVfde

3

which, horn equation (22), becomes

Equation @) gives a weighted average value of Z7.
This weighted average is elm equal to the unvreightedavernge

This fact can be shown from co*tion9 of the conee.rra-
tion of moment of momentum in the mmeleaedifber, which

ia based upon the weighted average of U and from considera-
tions of constant abeolute circulation in the difuaer, which ia
based upon the umreighted average of U.

Combining equationa @l) and (I@ remdta in the follow-
ing qreasion for the clip factor:

SIip factor= l+-&-r
s

,? m; de (H3)

The due of the integrand ia obtained from the rekation
solution.
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